Secondary Lithium Battery

Working on lithium batteries started in 1912 under the mentor-ship of G.N.Lewis but it was commercially availed in the 1970s. Lithium is the lightest of all the available metals and posses a great electrochemical potential and it offers the highest energy density for weight.

The biggest challenge in the development of lithium batteries was the safety problem. Because of the intrinsic instability of lithium metal mainly during charging the research on lithium shifted to a non-metallic lithium battery making the use of Lithium ions. Lithium-ion is safe because of lower in energy density than the lithium metal and needs certain precautions are during charging and discharging.

As stated by The Economist

“Increasingly, lithium is becoming to batteries what silicon is to semiconductors—prevalent, even among worthy alternatives. In one form or another, the lithium-ion battery is the technology of our time.”

Advantages

High energy density: The much greater energy density is one of the chief advantages of a lithium ion battery or cell. With electronic equipment such as mobile phones needing to operate longer between charges while still consuming more power, there is always a need to batteries with a much higher energy density. In addition to this, there are many power applications from power tools to electric vehicles. The much higher power density offered by lithium ion batteries is a distinct advantage.

Disadvantages

Protection required: lithium-ion cells and batteries are not as robust as some other rechargeable technologies. They require protection from being over charged and discharged too far. In addition to this, they need to have the current maintained within safe limits. Accordingly one lithium ion battery disadvantage is that they require protection circuitry incorporated to ensure they are kept within their safe operating limits. Fortunately with modern integrated circuit technology, this can be relatively easily incorporated into the battery, or within the equipment if the battery is not interchangeable.

Batteries/Energy Storage

Anyone shipping lithium-ion batteries in bulk is responsible to meet transportation regulations. This applies to domestic and international shipments by land, sea and air.

Lithium Alloys

Lithium-ion cells whose equivalent lithium content exceeds 1.5 grams or 8 grams per battery pack must be shipped as “Class 9 miscellaneous hazardous material.” Cell capacity and the number of cells in a pack determine the lithium content.

Lithium Alloys

All lithium-ion batteries must be tested in accordance with specifications detailed in UN 3090 regardless of lithium content (UN manual of Tests and Criteria, Part III, subsection 38.3). This precaution safeguards against the shipment of flawed batteries.

Batteries/Energy Storage

Exception is given to packs that contain less than 8 grams of lithium content. If, however, a shipment contains more than 24 lithium cells or 12 lithium-ion battery packs, special markings and shipping documents will be required. Each package must be marked that it contains lithium batteries.

Restrictions On Shipment Of Lithium-ion Batteries

Cart
Enquiry Cart ×
Loading....